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The first asymmetric catalytic synthesis of syn-alk-1-ene-
3,4-diols was developed; the regio-, diastereo- and enantiose-
lective addition of 3-chloropropenyl pivaloate to aldehydes
was made possible by exploiting Salen–Cr(II) species, in a
catalytic version of the Nozaki–Hiyama–Kishi reaction.

One of the most valuable routes to the alk-1-ene-3,4-diol 1 motif
involves the formal nucleophilic addition of 1-hydroxyallyl
anion (2) to carbonyl compounds. So far, molecular design has
supplied a number of heterosubstituted allylic organometallic
compounds 3,1 acting as synthetic equivalents of 2 (Scheme 1),
but asymmetric catalytic solutions are still lacking.2

We recently reported the use of 3-halopropenyl esters 4 in
Barbier–Grignard carbonyl additions using In(0)3 or Zn(0),4 in
an efficient, practical, regioselective and environmentally
friendly route to racemic syn- or anti-1 (Scheme 2).

Simple diastereoselectivity was found to basically depend on
the nature of the aldehyde, saturated aldehydes affording anti-
adducts, and aromatic aldehydes and ketones favoring forma-
tion of syn-1.

Here, we wish to report the first catalytic asymmetric
synthesis of syn-1, by applying Cr(II) chemistry5 to 3-chlor-
opropenyl pivaloate (6).

Even though the use of environmentally and toxicologically
hazardous metals (chromium is listed as a priority pollutant by
US EPA)6 is discouraged by green chemistry concerns, the
chromium star is not fading thanks to the availability of catalytic
protocols. A very significant achievement was accomplished by
Fürstner who developed a catalytic version of the Nozaki–
Hiyama–Kishi reaction based on the combined use of the redox
Mn(0)/Cr(III) couple and of trimethylsilyl chloride (TMSCl).5c,7

Moreover, the integration of the Fürstner protocol with the
addition of the Jacobsen’s Salen [N,NA-bis(3,5-di-tert-butylsali-
cylidene)-1,2-cyclohexanediamine] and triethylamine8 allowed
Cozzi, Umani-Ronchi et al. to develop a catalytic enantiose-
lective route to homoallylic alcohols.

When we applied the Fürstner protocol to 3-chloropropenyl
pivaloate (6) in the presence of a supplementary achiral ligand
(L = Bu4NI) in acetonitrile at 22 °C, the catalytic cycle depicted
in Scheme 3 afforded (Z)-enolester 11a (R = cyclohexyl) in
40% yield accompanied by 5% of 10a, as a 4 : 1 syn–anti
mixture.9

Thoroughly unexpected was the change in terms of re-
gioselectivity when the same process was carried out in the
presence of a chiral ligand [L = (R,R)-Salen] and Et3N; under

this condition syn-enriched adduct 10a was obtained as the main
product (Table 1, entries 1, 2).

The likely destabilization suffered by a-7 due to the
proximity of two sterically encumbered groups, namely the
pivaloate ester and the chiral chromium–ligand unit, could
account for this dramatic effect on regioselectivity.

Increasing the amount of Salen and Et3N from 10 and 20%
(Table 1, entry 1), to 20 and 40% (Table 1, entry 2),

Scheme 1 A = OR, BR2, SiR3.

Scheme 2 RA = CH3, Ph; X = Cl, Br; M = In(0), Zn(0).

Scheme 3

Table 1 (R,R)-Salen–Cr(II) catalysed reactions of 6 with a few representa-
tive aldehydesa

Entry R of RCHO
10, Yield
(%) syn : antib

syn e.e.
(%)c

anti e.e.
(%)c

1d Cyclohexyl 10a, 47 82 : 18 84 48
2 Cyclohexyl 10a, 68 83 : 17 94 67
3 Pentyl 10b, 50 83 : 17 93 65
4 2-Phenylethyl 10c, 78 85 : 15 99 85
5 Isopropyl 10d, 42 72 : 28 92 77
6 2-Methylpropyl 10e, 55 80 : 20 92 60
7 Phenyle 10f, 77 71 : 29 64 43
8 4-Methoxyphenyl 10g, 82 74 : 26 65 51
9 2-Naphthyl 10h, 60 78 : 22 73f 23f

a Reactions were carried out at 20–25 °C for 18 h using 20% Salen and 10%
CrCl3. See ref. 10. b Determined by GC-MS analysis of adducts 10 in the
crude reaction mixture. c E.e.’s were determined by chiral GC analysis of
1,3-dioxolanes 12 (see ref. 11). d 10% Salen and 10% CrCl3 were used; 11a
was isolated in 17% yield. e Extending the reaction time to 66 h, no change
in chemical yield and stereoisomer composition was observed. f E.e. values
were obtained by chiral HPLC analysis (Chiralcel OD, hexane–iso-
propanol) of syn- and anti-1.
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respectively, made regioselectivity virtually complete in favour
of 10a. Even more exciting was the effect of increasing the
relative amount of Salen and Et3N on relative and absolute
stereocontrol exhibited by the pivaloate ester 6; while simple
syn-diastereoselectivity increased to 64% d.e., 94% e.e. was
obtained for the major syn-isomer, and 67% e.e. for anti-10a
(Table 1, entry 2).

In order to evaluate the scope of the reaction, experiments
were performed with 6 using a few representative aldehydes and
adopting a carefully controlled synthetic protocol;10 the results
are collected in Table 1.

Products 10 are obtained in good yield and excellent
enantiomeric purity, particularly when aliphatic aldehydes are
involved (Table 1, entries 2–6), while a lower control of the
absolute stereochemistry is displayed by aromatic aldehydes
(Table 1, entries 7–9).

To unambiguously ascertain the syn/anti stereorelationships,
adducts 10 were deprotected to alk-1-ene-3,4-diols 1 with
LiAlH4, and compared with authentic specimens obtained in
racemic form using the zinc-promoted acetoxyallylation of the
same aldehydes with 4 (RA = CH3, X = Br).3,4 Diols 1 were
transformed into 1,3-dioxolanes 12 and e.e.’s were determined
for 12 by chiral GC (Scheme 4).11

The stereopreference of (R,R)-Salen–chromium complex 7,
invariably used in all the experiments, for the attack to the si
face of the aldehyde, was unambiguously established in three
cases;12 this observation was in agreement with the ster-
eopreference exhibited by other allylic complexes.8

In conclusion, only a limited number of stoichiometric
diastereo- and enantioselective routes to syn-113 or anti-114 via
nucleophilic addition of chiral heterofunctionalized allylic
complexes 3 to aldehydes are available.

The asymmetric synthesis of syn-1 proposed here represents
the first enantioselective catalytic route to this class of
molecules, and provides a new highly competitive synthetic
opportunity to address the synthesis of densely functionalized
intermediates, thanks to the synthetic flexibility of the carbon–
carbon double bond.
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